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ABSTRACT 

The complex electrical impedance characteristics of thin (of the order 

of 1000 A) bismuth films at infrared frequencies corresponding to the region 

between 2 and 15 microns are discussed. Equivalent electrical circuits are 

derived for films having initial resistances in the range between 34 and 350 

ohms per square,making use of theory from transmission-line analysis and of 

measurements of film resistance and infrared transmission. 

The electron beam irradiation of thin conducting films is considered, 

and particular problems associated with the determination of irradiation- 

induced characteristics of thin bismuth films are discussed. 

of instrumentation and techniques for solving these problems is presented. 

The development 

In addition, because the grant under which the research described above 

was conducted was aimed in part at the development of an improved research 

competence at Southern Methodist University, several facets of the unusual 

strengthening of this competence which has occurred solely because of the 

NASA multidisciplinary grant for this study of impedance characteristics of 

thin films are described in an Appendix. 



c 
\ 

Preface 

The work described herein was supported primarily by 
the National Aeronautics and Space Administration under 
Grant NGR 44-007-006. Some support was provided also 
by the Department of Electrical Engineering at Southern 
Methodist University. 



TABLE OF CONTENTS 

Page 

1. INTRODUCTION 1 

2. IMPEDANCE CHARACTERISTICS OF THIN BISMUTH FILMS 
2.1 Introduction 3 
2.2 The Determination of Film Impedance 
2.3 Determination of Equivalent Circuits for Low-Initial- 

Resistance Films 36 

3. IMPEDANCE CHARACTERISTICS OF IRRADIATED BISMUTH FILMS 
3.1 General Effects of Thin Film Irradiation 
3.2 Special Problems With Bismuth Films 

3.2.1 Deposition Control 
3.2.2 Gas Partial Pressure Analysis 
3.2.3 Infrared Transmission Characteristics 
3.2.4 Film Resistance Stability 
3.2.5 Control of Bismuth Films Under Irradiation 

3.2.6 Miniature Film Holders 
Conditions 

40 
4 1  
4 1  
47 
47 
49 

53 
53 

4. SUMMARY AND RECOMMENDATIONS 57 

5. LIST OF REFERENCES 59 

6. APPENDIX - THE STRENGTHENING OF RESEARCH CAPABILITY 60 
New Electron Microscopy Laboratory 60 
Thin Films Research Laboratory 62 
New Faculty, New Courses, New Research, and 

New Relations With Other Local Universities 65 

-iv- 



LIST OF FIGURGS 

Figure No. 

1 

2 

3 

4 

5 

9 

10 

11 

12 

13 

14 

Typical Set of Evaporated Bismuth Films Shown 
on Their Supporting Substrate Holders 

Transmission Coefficients of Evaporated Bismuth 
Films for Radiation at A = 14u 

Series Parallel Circuit. C = C, 

Determination of the Capacitance Value Assuming 
a Resistance-Capacitance Series Circuit as a 
Possible Film Impedance. (90-Ohm Film) 

P 

Determination of the Capacitance Value Assuming 
a Resistance-Capacitance Series Circuit as a 
Possible Film Impedance. (100-Ohm Film) 

Frequency Variation of Infrared Transmission 
for 90-Ohm Films 

Transmission Spectra for Evaporated Bismuth 
Films Immediately after Deposition 

Determination of the Capacitance Value Assuming 
a Resistance-Capacitance Parallel Circuit as a 
Possible Film Impedance. (90-Ohm Films) 

Determination of the Capacitance Value Assuming 
a Resistance-Capacitance Parallel Circuit as a 
Possible Film Impedance. (100-Ohm Films) 

Transmission Spectrum for 100-Ohm Evaporated 
Bismuth Films 

Determination of the Capacitance Value Assuming 
a Combination Series-Parallel Capacitance Circuit 
as a Possible Film Impedance. (90-Ohm Films) 

Calculated and Experimental Transmission Spectra 
for 90-Ohm Evaporated Bismuth Films 

Determination of the Capacitance Values Assuming 
a Series-Parallel Capacitance Circuit (34-, 52-, 
loo-, and 147-Ohm Films) 

Determination of the Capacitance Values Assuming 
a Series-Parallel Capacitance Circuit (180-, and 
254-Ohm Films) 

Page No. 

5 

8 

9 

12 

13 

14 

15 

17 

18 

19 

21 

22 

23 

24 

-V - 



Page No. Figure No. 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

Determination of the Capacitance Values Assuming 
a series-Parallel Capacitance Circuit (305 , 350- , 
and 370-Ohm Films) 

Calculated and Experimental Transmission Spectra 
for 34-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 52-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 100-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 147-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 180-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 254-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 305-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 350-Ohm Evaporated Bismuth Films 

Calculated and Experimental Transmission Spectra 
for 370-Ohm Evaporated Bismuth Films 

Theoretical and Experimental Determination of 
Inter-Grain Capacitance 

Mask Detail Showing Thickness Control and Rate 
Monitor Mounted Above 

Vacuum System and Associated Film Deposition 
Control, Rate Monitoring System, Partial Pressure 
Analyzer, Low Power Bridge, and Recording Equipment 

Infrared Transmission Characteristics of Evaporated 
Bismuth Films 

Infrared Transmission Characteristics of Evaporated 
Bismuth Films Six Months after Deposition 

Transmission Spectra for Evaporated Bismuth Films 
Six Months after Deposition 

Drift of Bismuth Film Resistance with Time 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

39 

44 

46 

48 

50 

51 

52 

-vi- 



Figure N o .  

32 

33 

34 

Page N o .  

Electron Micrograph of Evaporated Bismuth Film 54 
cooled t o  LN2 Temperature 

Electron Microscopy Laboratory 61 

Proposed Layout of the  New Electron Microscopy 
Training F a c i l i t y  

6 3  

-v i i -  



1. INTRODUCTION 

This is  the f i n a l  r epor t  on a research p r o j e c t  t o  determine the  impedance 

c h a r a c t e r i s t i c s  of i r r a d i a t e d  thin f i lms.  

Research planned i n  the o r ig ina l  proposal f o r  t h i s  p r o j e c t  sought t o  deter-  

mine the e f f e c t  of e l ec t ron  beam i r r a d i a t i o n  upon s o m e  of t h e  c h a r a c t e r i s t i c s  

of t h i n  fi lms by 

1. Verifying and extending the  impedance c h a r a c t e r i s t i c s  previously observed 

( i n  a l i m i t e d  number of experiments) i n  the  in f r a red  region f o r  f i lms of bismuth 

with i n i t i a l  res i s tance  below 300 ohms; and by 

2 .  Determining the  e f f e c t  which e lec t ron  beam i r r a d i a t i o n  may have upon the  

complex impedance cha rac t e r i s t i c s  determined i n  P a r t  1. 

The schedule of a c t i v i t y  fo r  conducting t h i s  research c a l l e d  f o r  th ree  man- 

years of e f f o r t .  The funding fo r  t he  p ro jec t  continued f o r  one and one-half man- 

years and then w a s  terminated. Progress of the work a t  t h a t  t i m e  w a s  on schedule. 

I n  addi t ion ,  i n  work v i t a l l y  important t o  the success of the  p ro jec t  y e t  no t  

scheduled i n  nor charged t o  the budget nor t o  the  Universi ty ,  the  Pr inc ipa l  Invest i -  

ga to r  had supervised the  design and construct ion of an $85,000.00 University 

e l ec t ron  microscopy laboratory i n  which the  i r r a d i a t i o n  s tud ie s  could be conducted 

properly.  

of l oca l ly  ava i lab le  e lec t ron  microscopy f a c i l i t i e s  were going t o  be inadequate.) 

(This w a s  done a f t e r  it w a s  determined t h a t  scheduling and capabi l i ty  

The first part of t h i s  report  w i l l  review the  theory of the determination of 

the complex impedance of a t h i n  f i lm and w i l l  p resent  t he  r e s u l t s  of t he  research 

c a r r i e d  out  on t h i s  project ,  comparing them with previously obtained r e s u l t s  of 

e f f o r t s  to  obtain equivalent  c i r c u i t s  and complex impedances f o r  evaporated t h i n  

f i lms.  It w i l l  be shown that there is  good agreement with previous work. This 

-1- 



*? 
w i l l  be followed by a discussion of the extension of this  work to  provide i n s i g h t  

i n t o  the nature  of equivalent c i r c u i t s  f o r  bismuth f i lms having i n i t i a l  r e s i s t ances  

down as l o w  as 34 ohms and as high as 370 ohms. The equivalent  c i r c u i t s ,  including 

values f o r  the res i s tances  and capacitances involved, f o r  f i lms  within t h i s  range 

w i l l  be given. 

The second part  of the report w i l l  d i scuss  the  general  and the special prob- 

lems t o  be d e a l t  with i n  the  i r r ad ia t ion  of bismuth fi lms. Progress which has 

been made i n  handling these problems, including developments i n  the knowledge, 

control ,  and s t a b i l i z a t i o n  of a number of f i lm and i r r a d i a t i o n  var iab les  w i l l  be 

presented. 

F ina l ly  an appendix i s  included i n  order  t o  discuss  bene f i t s  which have 

accrued t o  the  University because of t h i s  g ran t  f o r  t h i n  f i lms research. I t  is  

pointed out  that there are three  p r inc ipa l  benef i t s :  1) the  establishment of t he  

f i r s t  e lec t ron  microscopy laboratory a t  Southern Methodist University; 2 )  the  

enhanced capabi l i ty  of the  Thin F i l m s  Research Laboratory a t  the University;  and 

3)  the  a t t r a c t i o n  of new facu l ty  and the r e su l t i ng  establishment of new courses,  

new research, and extended re la t ions  with o ther  un ive r s i t i e s .  This information 

is included here also because the Pr inc ipa l  Inves t iga tor  has been involved i n  

obtaining a l l  th ree  of these benef i t s ,  and d i r e c t l y  responsible f o r  the  f i r s t  

t w o .  

(It i s  expected t h a t  the r e su l t s  of the s tud ie s  on bismuth f i lms w i l l  be 

included i n  a paper on the impedance cha rac t e r i s t i c s  of t h i n  f i lms t o  be submitted 

for  publ icat ion this year.)  

(It is also expected t h a t  continued support  f o r  t h i s  work w i l l  be sought 

both from NASA and from NSF. ) 

-2- 



2 .  IMPEDANCE CHARACTERISTICS OF T H I N  BISMUTH FILMS 

2.1 Introduction 

I n  previous work1-6 the  Principal  Inves t iga tor  and C.  E. Drumheller devel- 

oped and explored theory r e l a t i n g  the  o p t i c a l  c h a r a c t e r i s t i c s  of a t h i n  f i lm,  

a, 8 ,  and y ( r e f l ec t ion ,  absorption, and transmission) t o  e l e c t r i c a l  p rope r t i e s  of 

the physical  s t ruc tu re  of the  film. Using the  r e s u l t s  of t h i s  work and measurements 

of the i n i t i a l  e l e c t r i c a l  res i s tance  and the transmission a t  i n f r a red  frequencies ,  

it w a s  possible to  der ive  an equivalent c i r c u i t  and a complex impedance value 

which would adequately p red ic t  f i lm behavior. 

i n  the  rock s a l t  ( 2  t o  15 microns) region of t he  in f r a red ,  bu t  w a s  v a l i d  p r inc i -  

p a l l y  f o r  f i lms having l o w  i n i t i a l  values  of res i s tance .  The research made use of 

information and c h a r a c t e r i s t i c s  of f i lms  having i n i t i a l  values of r e s i s t ance  

ranging over severa l  decades; however, demonstration of v a l i d i t y  of the  concept 

w a s  given only f o r  f i lms  having i n i t i a l  values of r e s i s t ance  of approximately 

90 ohms. 

i n i t i a l  res i s tances  f o r  which an equivalent c i r c u i t  could be es tab l i shed .  In  

p a r t i c u l a r  it w a s  proposed t o  consider f i l m s  having i n i t i a l  r e s i s t ances  a s  low 

as approximately 10 ohms and as  high as 300 ohms. The lower l i m i t  w a s  determined 

by previous d i f f i c u l t i e s  i n  obtaining good e lec t ron  micrographs (and therefore  

good s t ruc tu re  appraisal) a t  this thickness.  

the f a c t  t h a t  between 300 and 400 ohms there  appears t o  be a t r a n s i t i o n  region 

separat ing f i lms which a r e  s t ab le  over long periods from those which a r e  not.  

The boundaries are not  well-defined (see the sect ion on Special  Problems With 

Bismuth). 

This development w a s  c a r r i ed  ou t  

The f i r s t  goal of present research w a s  the  establishment of a range of 

The upper l i m i t  w a s  determined by 

The preparat ion of the  f i lms  used as specimens i n  t h i s  work has been described 

i n  d e t a i l  i n  Progress Report l7 and w i l l  be only supe r f i c i a l ly  reviewed here f o r  

reference.  This applies a l so  t o  the measurement techniques. These specimens 

Superscr ipts  refer t o  numbered i t e m s  i n  the LIST OF REFERENCES on page 59. 

-3- 



*’ . 
are 15 x 15 mm squares of bismuth film formed by vacuum deposition through a mask 

onto a 350-angstrom-unit-thick substrate of cellulose nitrate. 

mounted on a square open frame having one pair of opposite sides made of Lucite 

and the other sides made of brass. (See Fig. 1) The bismuth was deposited at a 

pressure of 3 x mm Hg. 

The substrate is 

Film resistances were measured with very low-level inputs using an off- 

balance bridge. Resistance of one film of a set (of four) was monitored during 

each evaporation. 

Infrared transmission measurements in the 2- to 15-micron region were made 

on a Beckman IR-5 spectrophotometer. 

Essentially every aspect of the preparation, control, and measurement of the 

films used in the current research was similar to that of previous work. There 

was one exception: these films were prepared at an approximate order of magnitude 

better vacuum than earlier films. In general, the resistance measurements, 

infrared data, electron micrographs, and complex impedance analyses verify the 

validity and usefulness of previous work. 

2.2 The Determination of Film Impedance 

The concept of complex electrical impedance for a thin film was developed 

as a useful way to provide a physical interpretation for observed thin film opti- 

cal properties. It was found that the value of resistance can be determined from 

the dc resistance and a statistical consideration of grain boundary resistance 

distribution. The value of reactance can be determined from infrared transmission 

measurements and the result of a transmission line analysis. Results from past 

work have indicated that the reactance is capacitive and may be attributed to a 

dielectric of oxide between grain boundaries. The transmission line analysis 

will now be developed briefly, and the results necessary for equivalent circuit 

-4- 



Fig. 1. Typical S e t  of Four Evaporated Bismuth F i l m s  Shown on Their Supporting 
Substrate  Holders. The f i f t h  holder (a t  the  top of the p i c tu re )  
supports only a ce l lu lose  n i t r a t e  subs t ra te  which i s  always used with 
t h i s  se t  as a reference during inf ra red  measurements. There i s  no 
bismuth on it. F i l m s  sometimes develop wrinkles upon aging. 
(Magnification: approximately 2x1 
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determination w i l l  be obtained. Thereaf ter ,  ca lcu la t ions  w i l l  be made t o  de te r -  

mine equivalent c i r c u i t s  f o r  nine typ ica l  f i lms from the  f i f t e e n  s e t s  of four  

f i lms  on which da ta  were taken. 

A transmission l i n e  analysis  is possible  i f  the  following c i r c u i t  is  assumed 

4 I I 

b 
Incident  I 
Radiation 

where , i f  * 
zo - Z T  

K =  
'0 + 

E 2 ( Z  + Z*) 
22z* w =  

a, B ,  and y can be determined as follows: 

2 zn a =  

B =  

Y =  

ZoL + 2 Z O ( Z  + Z*) + 4zz* 

2ZO(Z + Z*) 
ZoL + 2Z0(Z + Z*) + 4ZZ* 

4 z z *  
z o 2  + 2Z0(Z + Z*) + 4zz* 

Where Zo = 376.6 ohms per square 

K is  the r e f l e c t i o n  coef f ic ien t  

zT i s  the impedance seen by the  inc ident  r ad ia t ion  

Z i s  the  impedance of the  f i l m  

W i s  the power del ivered t o  the  f i lm 

E i s  the voltage across the f i lm 

Q is  the f r ac t ion  of incident power r e f l ec t ed  by the f i lm 

8 is  the f r ac t ion  of incident power absorbed by the  f i lm 

y i s  the  f r ac t ion  of incident power t ransmit ted by the  f i lm 
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Now i f  a 

of Z ,  and Z = 

simple series c i r c u i t  i s  assumed as an accurate representat ion 

R + jX, equation (5) y i e lds  

If, on the other  hand, a simple pa ra l l e l  c i r c u i t  i s  assumed, equation (5) y ie lds  

R 
( 7 )  

Equation (5) is  chosen because y is  r e l a t i v e l y  easy t o  measure, and thus 

these expressions can be examined experimentally. 

I f  the foregoing r e l a t i o n s  (Equations 6 and 7 )  between y and R (where R is  

a measured f i lm res i s tance  i n  ohms per square) are p lo t ted9  (Fig. 2 )  f o r  constant 

ratios of (t), both f o r  the  se r i e s  and f o r  the p a r a l l e l  cases,’ and then i f  experi- 

mental values of y and R a r e  plot ted on the same graph, it is  found t h a t  the 

experimental curve does not completely fit the  case f o r  (g) = 0 ( the  case i n  which 

the f i lm is purely r e s i s t i v e ) * .  From these and other  data ,  one can infer’0r’’  

however, t h a t  the f i lms behave l i k e  the graphical predict ions f o r  the p a r a l l e l  

c i r c u i t  case a t  values of E€ resis tance (R) above approximately 1,150 ohms. Also, 

the  fi lms behave l i k e  predictions f o r  the  series c i r c u i t  case a t  values of DC 

res i s tance  below approximately 1,150 ohms. This behavior i s  readi ly  re la ted’  

t o  s t ruc ture .  

It  is possible a l s o  t o  deduce”,” from the data  a strong ind ica t ion  t h a t  

the series c i r c u i t  is composed of res i s tance  and capacitance i n  series, and, i n  

addi t ion,  t h a t  it is not  resistance and inductance i n  series. Similar ly ,  it is  
~ 

*Skin effect calculat ions indicate t h a t  there  should be no change i n  r e s i s t i v i t y  
from 
those being considered ( -1000 A )  . 

through the inf ra red  for  f i lms  having thicknesses of the order of 
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possible to infer that the parallel circuit is resistance and capacitance in 

parallel, and that is not resistance and inductance in parallel. Further, it 

has been shownll that either one of these types of circuits alone is not an ade- 

quate representation of the film characteristics. 

The simple series-parallel circuit in Fig. 3 was suggested” as a more 

reasonable possibility, 

Fig. 3 Series-Parallel 
Circuit, C = Cs P 

and its validity was established by: (1) drawing inferences regarding physical 

structure from electron micrographs; (2)  making assumptions as to the source of 

the resistance and capacitances; and ( 3 )  postulating that, since the film has 

a measurable DC resistance, this circuit is valid for areas of the film in which 

the dimensions are small compared to the wavelength (of the incident radiation). 

Continuing the transmission line analysis it is now possible, assuming 

that the equivalent circuit for the film is that of Fig. 3 ,  to determine 

values for Cs, Cp, and R. 

indicates that the value of R = ~ R D ~ .  

general expression for the impedance of the series-parallel equivalent circuit 

which follows. 

First, one assumes Cs = Cp (=C) . 
These relations are then used in the 

Previous experience” 

z =  
R2 + X2 R2 + X2 

-9- 
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Now i f  t h i s  expression f o r  2 is  subst i tuted i n t o  the general  expression f o r  

transmission, Eq. (5) , one obtains 

4R2 + X2 
Y =  

("2.)" - R2 + x2 + ZoR + (4R2 + X2) 
X 2  

The problem of finding X (and from it, C )  is  extremely involved, and it i s  

helpful  t o  make use of quadratic notation. Solving Eq. (9) f o r  X2 yie lds  

-b + d b 2  - 4c 
2 

x2 = 

where b = 4R2 - 

2 
c = -(&)(q R2 

(10) 

(11) 

subs t i tu t ing  X = - A i n  Eq. (10) one obtains the desired equation 
2lTgz 

(c i s  the  ve loc i ty  of l i g h t )  (13 1 - 

When the c i r c u i t  of Fig. 3 i s  a valid equivalent f o r  a f i lm,  Eq. (13) must 

hold; and a p l o t  of the left-hand s ide  against  the frequency ( 1 / A )  should be 

l i n e a r  and should pass through t h e  or ig in  with a slope equal t o  the capaci- 

tance,  C. P lo ts  of Eq. (13) have been obtained f o r  f i lm specimens having 

a wide range of i n i t i a l  res is tances ,  and w i l l  be displayed and discussed 

later.  The information which can be infer red  from them is one of the major 

r e s u l t s  of t h i s  paper. I t  is useful f i r s t ,  however, t o  compare the r e s u l t s  

of the present  research on loo-ohm fi lms 

because of the proximity of the two i n i t i a l  res i s tance  values. 

- 

with previous work on a 90-ohm f i lm,  

An equation similar t o  Eq. (13) i s  va l id  f o r  the simpler case i n  which 

the equivalent c i r c u i t  is  a capacitance i n  series with a res i s tance  (instead 

of with a res i s tance  and capacitance i n  p a r a l l e l ) .  

-10- 



It is 

In previous research the  curve of Fig. 4 w a s  a p l o t  of Eq. (14) and, f o r  

a f i lm having an i n i t i a l  res is tance of 90 ohms, yielded a value of 

3.8 x lo-' ppf/square for capacitance. 

is  a p l o t  of Eq. (14) obtained from a f i l m  having an i n i t i a l  res i s tance  of 

100 ohms. 

3.55 x 10 ppf. This is excel lent  agreement. A bismuth f i lm whose i n i t i a l  

res i s tance  i s  100 ohms i s  thinner than a bismuth f i lm whose i n i t i a l  res i s tance  

is  90 ohms. The inter-grain capacitance, therefore ,  could be expected t o  be 

smaller. 

In  recent  research the  curve of Fig. 5 

From t h i s  curve it i s  possible t o  i n f e r  a capacitance of 

In  Figs. 4 and 5 a dot ted ve r t i ca l  l i n e  can be seen near the 1 / X  value 

-1 of 2000 cm , and should be explained. One s ide  is  labe l led  "series" and the 

o ther ,  "para l le l" ,  t o  de l inea te  the  t r ans i t i on  value of frequency, on the 

one s ide  of which the f i lm behaves l i k e  a series c i r c u i t ,  and on the other 

s ide  of which the f i lm behaves l i k e  a p a r a l l e l  c i r c u i t .  This may be under- 

stood by an examination of Fig. 2 .  Here the t r a n s i t i o n  value va r i e s  and it 

i s  seen t o  be dependent upon resistance.  The e f f ec t ive  value f o r  any given 

f i lm is  found by determining the frequency a t  which p l o t s  of t heo re t i ca l  

and experimental transmission values in t e r sec t .  

previous experience with 90-ohm f i l m s .  The t r a n s i t i o n  frequency is approxi- 

mately 1780 cm . A similar p lo t  (Fig. 7 )  of recent  experience which includes 

100-ohm films i s  almost ident ica l ,  and y ie lds  a t r a n s i t i o n  frequency of 

1700 cm . Now since the calculations f o r  which da ta  are p lo t ted  i n  Figs. 4 

Figure 6 is a p l o t  of 

-1 

-1 
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and 5 were obtained assuming a series circuit, it would be expected that the 

data would deviate increasingly from a straight line as the plot approached 

the transition frequencies. Those deviating data therefore are not included 

in the determination of the straight-line relation yielding the capacitance 

value. 

Continuing the comparison with previous work: an equation similar to 

Eq. (13) was developed for the case in which the equivalent circuit is a 

capacitance in parallel with a resistance. This equation is 

The curve of Fig. 8 is a plot of Eq. (15) for a 90-ohm film, and from it a 

value of capacitance of 3.5 x ppf per square was determined previously, 

allowing for uncertainties in infrared measurements and for incomplete data. 

Recent research has yielded data for the curve of Fig. 9, from which a value 

for capacitance of 3.9 x 10-5 ppf per square has been determined as before for 

a 100-ohm film. Again this is good agreement. 

It is now desirable to check the validity of the values of capacitance 

determined by the methods just discussed. This is possible by assuming that 

one actually has the types of circuits for which the capacitances were deter- 

mined and then by calculating the theoretical infrared transmission which can 

be expected for these circuits if they contain capacitances of the values deter- 

mined. These transmission data can then be plotted as a function of l/h, and 

compared with the experimentally determined curve plotted on the same axes. 

Theoretical infrared transmission values for both series- and parallel-type 

circuits are plotted together with experimental data from project research 

in Fig. 10. The validity of the circuits and capacitance values is demonstrated. 
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As would be expected for a simple resistance-capacitance series circuit, the 

theoretical behavior at high frequencies approaches that of the resistance alone. 

Correspondingly, the theoretical behavior of a simple resistance-capacitance 

parallel circuit should approach that of the resistance alone at low frequencies. 

The results obtained in Fig. 10 are similar to those obtained in previous work”. 

From Fig. 10 it is quite apparent, however, that neither simple circuit is 

completely representative of the film impedance. 

evident: 1) the imdepance characteristics are like those of a resistance shunted 

by a parallel capacitance at high frequencies, and of the same resistance with a 

series capacitance at low frequencies; and 2 )  the capacitances in these two cases 

have essentially the same values. These facts suggest that the film impedance 

may actually be that of a combination series-parallel circuit. It was for such 

a circuit that the equation for impedance, 2, given in Eq. (8) was derived and, 

as previously discussed herein, the equation for determining the capacitance 

in such a circuit, Eq. (13), was obtained. 

Two outstanding facts are 

Equation (13) was used in previous work with 90-ohm films to obtain a value 

for C from the plot of data in Fig. 11. 

which this value of C was obtained is given in Fig. 12. 

mental curve with the curve calculated for the series-parallel circuit case is 

good. It is unusually good when compared with the infrared transmission curve 

(simple resistance 45 ohms in Fig. 12) which assumes that the film is a pure 

resistance and has no reactive component. It is also better than the agreement 

with either of the curves suggested by other types of circuits. 

A test of the validity of the circuit for 

Agreement of the experi- 

In the research of this project, values for C were determined from a series 

of curves which are shown in Figs. 13, 14, and 15. The validity of the series- 

parallel circuits for which these values were obtained can be examined in the 

calculated and experimental curves of Figs. 16 through 24. First, however, in 
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Fig. 12.  Calculated and Experimental Transmission Spectra for  
90-Ohm Evaporated Bismuth F i l m .  
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a final comparison of the results of this research with those from previous 

work, consider the determination of C for a film having an initial resistance 

of 100 ohms which was carried out in Fig. 13. 

for the 100-ohm film is a reasonable value when compared with the previously 

obtained value of 5.3 x 10’’ pvf for a 90-ohm films. 

the capacitance of this film would be smaller because the film and thus the metal 

crystallites (whose sides are assumed to form the plates of the inter-grain capa- 

citorsll) are thinner. 

The value of 4.2 x 10’’ obtained 

It would be expected that 

This value for C is also compatible with other values 

for C obtained in this research and listed on Figs. 13, 14, and 15. 

When this value for C is used to predict the infrared transmission which 

might be expected from a film having the series-parallel equivalent circuit, the 

calculated curve of transmission versus frequency given in Fig. 18 is obtained. 

It can be seen that this curve agrees best with experimental observations at low 

frequencies. The agreement is considerably superior to that obtained previously 

(see Fig. 12) for 90-ohm films at low frequencies. At high frequencies however, 

the agreement is much poorer, and the series-parallel circuit can only be con- 

sidered as a reasonable first approximation to an equivalent circuit. 

with the 100-ohm film does, however, reinforce the previous work in validating 

the heretofore-unknown concept of complex impedance as a useful describing function 

in the study of conducting thin films. 

This work 

The work of determining the exact equivalent circuit over a wide range of 

frequencies is material for other research and was not a goal of the work reported 

upon herein. 

and previous work, validation of the complex impedance concept for more than a 

limited case involving 90-ohm films, and an extension of the determination of 

equivalent circuits to films having a range of values of initial resistances. 

work was necessary before irradiation studies could be meaningful. 

In the present research the goal was continuity between this work 

This 

The first part 
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of this goal has been discussed in this section. 

cerned with the extension of the complex impedance concept to other films. 

The next section will be con- 

2.3 Determination of Equivalent Circuits For Low-Initial-Resistance Films 

Consider now the data presented in Figs. 16 through 24. Each of these 

figures represents an effort to demonstrate that the series-parallel circuit 

shown thereon represents the film at infrared frequencies as an equivalent 

circuit. 

dimension is considered to be very much smaller than the wavelengths of the 

incident radiation being considered. In each case the calculated curve is 

obtained by assuming that the equivalent circuit shown represents the film, that 

the value of R is the measured initial resistance divided by two, that C is 

determined using experimentally obtained infrared transmission data in conjunc- 

tion with Eq. (13) as discussed previously herein, and that the value of calcu- 

lated infrared transmission is obtained from Eq. (9). The experimental curve 

is a plot of measurements of infrared transmission on the film soon after it was 

deposited by evaporation. 

It should be understood that this implies that the circuit physical 

It is seen that the series-parallel circuit is a useful representation for 

films of all the values of initial resistance except for the highest (370 ohms) 

over a considerable portion of the spectrum examined, and that the agreement is 

usually best for lower frequencies. It is clear, however, that certain aspects 

of the physical characteristics of the films themselves have yet to be accounted 

for in the equivalent circuit. Even so, these results continue to validate the 

concept of a complex impedance as a useful describing characteristic for con- 

ducting thin films, and indicate that the series-parallel circuit is a good first 

approximation to an adequate equivalent circuit. 

It is desirable to give some further consideration to the validity of the 

concept of inter-grain capacitance, and particularly to the validity of the values 
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of capacitance determined in Figs. 13, 14, and 15. It was stated previously 

that the capacitance is assumed to be due to a dielectric of bismuth oxide in 

the grain boundaries (between the sides of the crystallites). 

shown’’ that this is a reasonable assumption if one compares the observed physical 

It has been 

dimensions of the crystallite boundaries and inter-grain spacings with the dimen- 

sions necessary to produce the capacitance values observed. In that work by 

Howard and Drumheller, films having crystallites whose sides were approximately 

1000 A long (determined by electron microscopy) were assumed to have capacitors 

in their equivalent circuits whose plates were plane, square, and 1000 A on 

a side. Bismuth oxide was assumed as the dielectric, with a dielectric constant 

of unity. 

determined for the 90-ohm film, 5.3 x ppf, was an expected value provided that 

It was then determined by simple calculation that the capacitance 

one had an inter-grain spacing (or dielectric thickness) of approximately 16 A. 

Examination of grain boundaries by electron microscopy indicated that 16 A 

was a good possible value for inter-grain spacing, and thus the capacitance 

which had been determined seemed acceptable. Subsequently it was determined5 

that 90-ohm films could be expected to have thicknesses of approximately 

1470 A. This would indicate that the inter-grain spacing should be 35 A. This 

is still a reasonable value. 

In the same work5 the values for a wide range of initial film resistances 

were related to film thickness. That information together with the assumption 

made previously in calculating the inter-grain spacing required for a given 

capacitance suggests another way to examine the validity of the concept of inter- 

grain capacitance. Suppose that one has determined the inter-grain spacing. 

Then, if the plates of the inter-grain capacitors remain square, the capacitance 

should be directly proportional to the square of the thickness of the film-- 

the inter-grain spacing (dielectric thickness) having remained constant,-- 

and it should be possible to calculate the capacitance corresponding to each 
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. 
value of initial resistance. Experimentally determined values (From Figs. 13, 

14, and 15) corresponding to all values of initial resistance should agree. 

The calculations were carried out and a plot of the theoretical relation between 

initial resistance and capacitance based on the inter-grain spacing of the 

100-ohm film is given in Fig. '25. It is of particular significance that the 

values of capacitance determined experimentally by the methods described 

previously (making use of Eq. [131) when plotted as a function of initial film 

resistance fall almost on top of the curve of calculated values. 

is good, and the concepts of inter-grain capacitance and of complex film impe- 

dance are further validated.* 

The agreement 

*Neuman12 has determined that the crystallites of films of bismuth having thick- 
nesses around 800 A are largely columnar in nature, with their average dimen- 
sions in the film plane as low as 1/4 of the thickness. With decreasing thick- 
ness down to 100 A they change to a "flagstone"-type structure in which the 
average dimension in the plane of the film varied up to five times the value 
of their thickness. 
greater than 700 A, varying from 715 A for the 370-ohm film up to 2130 A for 
the 34-ohm film. The thicknesses were determined from Fig. 2 ,  Reference 5. 

~ l l  of the films described in this report have thicknesses 
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3. IMPEDANCE CHARACTERISTICS OF IRRADIATED BISMUTH FILMS 

3.1. General Effects of Thin Film Irradiation 

The effects of high-energy particles and electromagnetic radiation 

on metals can be divided into three categories: (1) the excitation of 

electrons; ( 2 )  the permanent or semi-pemanent change of the periodic struc- 

ture of the crystal; and (3)  direct and indirect effects of temperature. All 

of these effects are believed to occur in thin films under electron bombard- 

ment, particularly where the electrons have the energies associated with the 

accelerating potentials of 50, 75, and 100 KV commonly found in the electron 

microscope. The effect of this bombardment can, for example, cause the 

generation of excess charge carriers if it is in the first category. Effects 

of the second category can be expected to include the ejection of atoms 

from lattice sites, and are not always completely separated from effects of the 

third category: absorption of energy sufficient to cause melting, re-orientation, 

and re-crystallization. 

It is believed that all three of these effects operate to produce changes 

in the complex impedance characteristics of thin films, and that if the 

mechanisms and effects can be established, it will be possible to produce any 

of a wide range of desirable impedances. It has already been dem~nstrated~'~. 

that changes in the observed structures occur under electron beam irradiation 

in the electron microscope. They are visible as changes in the appearance 

(relative darkness) of metal crystallites where these crystallites present 

a diffraction-contrast pattern rather than an absorption pattern in the electron 

microscope. Such changes occur only when there is a change in the angle which 

a crystal plane is presenting to the impinging electron beam. 

consideration, the thickness (of the order of magnitude of 1000 A) is such that 

For the films under 
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when the Bragg angle is not s a t i s f i e d  (and the beam deflected)  the  beam is readi ly  

transmitted through the f i l m  and presents an absorption pa t t e rn  on the microscope 

screen. Now it is expected that these changes (by themselves; other  possible  

changes apar t )  w i l l  a f f e c t  the conductivity of both the metal and the metal oxides 

contributing t o  the impedance cha rac t e r i s t i c s ,  s ince conductivity i s  dependent 

upon the c rys t a l  axis along which the current  i s  flowing. 

Determination of change, however, requires  a careful cont ro l  of a l l  the  

parameters to  which the f i l m  s t ruc ture  (and therefore  the complex impedance) is 

sens i t i ve  both during and after the deposit ion of the fi lm i n  order t h a t  normal 

changes may be separable f r o m  changes due t o  i r r ad ia t ion .  

t o  determine and t o  evaluate as many of the  parameters as possible  i n  the case 

of t h i n  fi lms of the metal of in te res t ,  

and is  discussed below. 

This research attempted 

bismuth. Considerable progress w a s  made 

3.2. Special  Problems With Bismuth F i lms  

The f i r s t  concern i n  this work w a s  the  determination and s t a b i l i z a t i o n  

of what might be ca l led  the f i lm variables .  Other var iables  a re  those asso- 

c ia ted  with the ac tua l  i r rad ia t ion  of the f i lms and w i l l  be discussed as 

i r r a d i a t i o n  var iables  later. Film var iables  include rate of formation, thick- 

ness,  gas pressure during formation, in f ra red  transmission, i n i t i a l  res i s tance ,  

and long-term res i s tance  s t a b i l i t y .  

- 

3.2.1. Deposition Control 

Control of the rate of f i lm formation and the f i n a l  f i lm thickness has 

been under continuous study and development s ince the  beginning of the pro jec t .  

Specif ic  d e t a i l s  concerning the type of source and the r a t e  of f i lm deposit ion 

w e r e  given i n  Progress Report 1. 

the p ro jec t  and performed primarily a timekeeping and recording function. 

consisted of four in t e rva l  t i m e r s  and switching c i r c u i t r y  mounted on a rack panel 

The f i r s t  deposit ion control  u n i t  was b u i l t  on 

It 
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with two var iable  transformers and a meter f o r  es tab l i sh ing  current  levels. 

two transformers were used t o  pre-set  the  source currents  f o r  the  evaporation and 

the pre-heat period preceding the evaporation. 

of the pre-heat cycle, the ful l -heat  cycle,  the period i n  which a shu t t e r  remained 

open, and the total  elapsed t i m e .  

which were thrown sequent ia l ly  i n  the course of an evaporation. 

the operator,  the u n i t  emitted audible markers a t  one second in t e rva l s .  

The 

The timers recorded the lengths 

The timers w e r e  actuated by toggle switches 

A s  an a id  t o  

With t h i s  control  u n i t ,  a l l  control operations were performed manually 

and w e r e  subject  t o  var ia t ion  from one evaporation t o  the  next and a l s o  during 

a s ing le  evaporation. In  pract ice ,  the current  controls  were set  t o  pre-determined 

values and then an e n t i r e  evaporation took place a t  t h a t  s e t t i ng .  

of one fi lm (out of a group being deposited) w a s  monitored and used t o  control  

the length of evaporation. When the res i s tance  of the control  f i lm reached 

the desired value the evaporation w a s  terminated by closing the shu t t e r  and 

turning off the source current .  

The res i s tance  

The source current  would d r i f t  downward as an evaporation progressed and, 

when the operator had no other  immediate chore, the current  w a s  corrected by 

hand i n  an attempt t o  maintain a constant source current .  There w a s  no way 

i n  which the rate of deposi t  could be control led o r  monitored, and the f i lm 

thicknesses f o r  each evaporation were not known. A recording of the control-  

f i l m  res i s tance  vs. time was made and qua l i t a t ive  information r e l a t i v e  t o  

the constancy of the r a t e  of deposit could be drawn from it; however, it w a s  

apparent t h a t  both deposit ion rate  and the deposi t  thickness needed t o  be 

known, i f  not controlled.  

A u n i t  manufactured by Sloan Instuments and ca l led  the OMNI-I was obtained 

f o r  evaluation along with a companion s i l icon-control led r e c t i f i e r  source p o w e r  

supply and current  transformer. This u n i t  is  a combination deposit-thickness 

monitor and rate control ,  and uses a quartz  c r y s t a l  o s c i l l a t o r  i n  the  deposit ion 
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chamber as a sensing device. The un i t  which was evaluated had a number of 

def ic ienc ies ,  foremost of which was the inclusion of such a la rge  amount of 

damping i n  the rate- indicat ing c i r cu i t ry  t h a t  a l l  rate var ia t ions  were masked 

en t i r e ly .  

w a s  compared with the actual rate as indicated by the  rate of frequency s h i f t  

of the c rys t a l  o s c i l l a t o r ,  and the difference w a s  converted t o  a control  voltage 

f o r  the source p o w e r  supply. Thus a low r a t e  caused a l a rge r  amount of power 

t o  be delivered t o  the source, resu l t ing  i n  the desired increase i n  deposi t  

r a t e .  

The rate control  was a feedback system i n  which a pre-set  r a t e  

A t  a later da te  the laboratory obtained a more v e r s a t i l e  version of the 

un i t ,  the OMNI-11, i n  which most of the def ic iencies  of the f i r s t  u n i t  had been 

corrected; however, some modifications have been made on it and are  considered 

necessary. These modifications include replacing three single-turn potentiometers 

on the  f ron t  panel with ten-turn uni t s  and turns-counting d i a l s .  This w a s  necessary 

because the o r ig ina l  un i t s  could not be set accurately.  Two other  potentiometers 

a l s o  are inaccurate but they are concentric u n i t s  and no multiple-turn replacement 

is avai lable .  I t  has been determined t h a t  the timing functions which they cont ro l  

are l i nea r  with res i s tance ,  however, and the required f ixed r e s i s t o r s  have been 

used t o  replace these potentiometers through a programming plug on the rear of 

the u n i t .  

shu t t e r  a t  the proper t i m e s  during the  evaporation sequence. Several d i s t i n c t  

evaporations, each f o r  a d i f f e ren t  f i lm thickness,  a r e  being made t o  ca l ib ra t e  

the u n i t  with respect  t o  frequency s h i f t  vs. thickness of bismuth. Figure 26 

shows the c r y s t a l  sensing u n i t  i n  place above the deposit ion mask. For the 

ca l ibra t ion ,  f i lm thicknesses a re  being determined by use of a multiple-beam i n t e r -  

ferometer. Following the  completion of the ca l ib ra t ion  curve, the deposi t  cont ro l  

u n i t  w i l l  be used as the film-thickness-measuring instrument as w e l l  a s  the rate 

control ,  and i t s  ca l ib ra t ion  w i l l  need t o  be ve r i f i ed  only  a t  in te rva ls .  The 

The necessary equipment has been constructed t o  open and close the 
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vacuum System and the associated f i l m  deposi t ion cont ro l  and rate monitoring 

equipment are shown i n  Fig. 27. 
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Fig. 27. Vacuum System and Associated Film Deposition Control, R a t e  Monitoring 
System, Pa r t i a l  Pressure Analyzer, Low-Power Bridge, and Recording 
Equipment 

-46- 



4 

3.2.2. Gas Partial Pressure Analysis 

A film variable which is of particular importance is the partial pressure of 

each of the various gases present in the vacuum chamber during film formation. It 

is believed that these gases are primarily responsible for the formation of 

inter-grain oxides which constitute the dielectric in the capacitances observed. 

In order to determine the amount of each gas present and in order to be 

able to establish that the amounts of gases present during deposition runs are 

constant, even though many of those present do not appear to be intimately 

involved in film formation reactions, the project purchased an AeroVac Model AVAl 

Vacuum Analyzer. This instrument uses a Model ASTl Spectrometer Tube which 

employs two 60-degree sector magnets to cover a total range of approximately 2 

to 70 AMU and gives unit resolution to 35 AMU. 

in leak detection, and is producing satisfactorily the necessary information on 

the partial pressures of gases of interest, particularly oxygen. 

The unit has been very effective 

3.2.3. Infrared Transmission Characteristics 

Establishment of the infrared transmission characteristics of bismuth 

films is necessary to the determination of the equivalent circuit and the 

complex impedance for each film. It is important to know how these charac- 

teristics vary for films having different values of initial resistance, and 

also what variation can be expected over a period of time. 

variables have been determined. Figure 29 is a presentation of the transmission 

characteristics of the bismuth films for which equivalent circuits and complex 

impedances have been determined in this report. These characteristics were 

obtained immediately after the formation of the films and correspond to the 

time at which the initial values of resistances associated with the films 

These film 
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were measured. The decrease in transmission as one nears the wavelength region 

of visible light is what would be expected, of course, because all of these 

films are relatively opaque. 

transition frequencies is a presentation of the same infrared transmission charac- 

teristics as a function of wavenumber. 

Figure 9, already discussed in the determination of 

Figure 29 is a presentation of the transmission characteristics of these 

same bismuth films approximately six months after formation. If these data are 

compared with those of Fig. 25, it can be seen that the films having low values 

of initial resistance changed inappreciably during this period. 

mission of films having high values of initial resistance changed by more than 

20% in some cases. It is believed this change is due to oxidation of bismuth. 

A corresponding presentation of transmission characteristics as a function of 

frequency is given in Fig. 30. These data will be used in the determination of 

the change in equivalent circuit structures and complex impedances as a function 

of time. 

Infrared trans- 

3.2.4. Film Resistance Stability 

The control of initial resistance, and its consistent reproduction with the 

same type of structure and in the same length of time, is now assured with the 

partial-pressure analyzer, the deposition rate control, and the thickness-monitoring 

equipment. Control of the variation of this initial resistance with time has not 

been attempted recently. More important information at this time is a knowledge 

of the way in which the resistance changes under normal ambient conditions. The 

work of this project has provided that information with the curves of Fig. 31. 

Figure 31 is a record of the change of resistance of the films used for the 

These data are in sub- principal work of this project during the past 750 days. 

stantial agreement with previous work2, and indicate a general stability with time 

for bismuth films below an initial value of 100 ohms. 
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Fig. 30. Transmission Spectra for Evaporated Bismuth Films S ix  
Months After  Deposition. 
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3.2.5. Control of Bismuth Films Under I r r ad ia t ion  Conditions 

Progress Report 1 displayed an e lec t ron  micrograph of a bismuth fi lm of 

the type t h i s  pro jec t  has considered, and micrographs of t h i s  nature have been 

produced on the Universi ty 's  own microscope s ince t h a t  one was made. 

micrographs are not easi ly  made because exposure of the bismuth f i lm t o  the 

beam causes changes i n  the metal almost immediately. The control  of these 

Such 

changes has been the goal of a considerable amount of p ro jec t  e f f o r t .  

It  is c l ea r  t h a t  specimens from bismuth fi lms of ce r t a in  thicknesses a re  

easier t o  control  than specimens from others .  

are  sharper a t  higher accelerating voltages,  y e t  these voltages produce other  

e f f e c t s  i n  the fi lms. 

f o r  the c r y s t a l l i t e s  under observation; however, t h i s  i s  not without adverse 

e f f e c t s  a lso.  Figure 32 is a typical  bismuth f i lm e lec t ron  micrograph which has 

been obtained with the f i lm cooled t o  LN temperature. The spots a re  believed 

t o  be caused by bismuth which as been evaporated by the electron beam and then 

re-deposited on the ch i l l ed  bismuth surface.  Output from other  sources of 

contamination has been systematically reduced so t h a t  t h i s  seems t o  be the 

bes t  postulate  a t  t h i s  t i m e .  A l l  of these problems have received a t t en t ion ;  

however, the kind of control  which is necessary f o r  moderately long-time 

(16-30 seconds) study of the film specimens a t  l eve l s  of i l lumination which 

enable easy study of inter-grain phenomena, f o r  example, has ye t  t o  be achieved. 

It i s  a l so  c l e a r  t h a t  images 

It is evident a l s o  t h a t  LN2 provides some s t a b i l i t y  

2 

3.2.6. Miniature F i l m  Holders 

In  order t o  obtain electron micrographs of the bismuth f i lms,  it is now 

necessary t o  sacrifice completely one of the  fi lms such as  those shown on the 

holders i n  Fig. 1. This requires taking a three-millimeter-diameter piece out  

of the f i lm,  thus rendering it unsuitable f o r  fu r the r  res i s tance  or inf ra red  

measurements of the type generally made on it previously. The piece taken 

-53- 



Fig. 32. Electron Micrograph of Evaporated Bismuth F i l m  Cooled t o  LN Temperature. 2 
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out  of the  f i l m  is  mounted on an electron microscope specimen g r id  f o r  the  usual  

examination i n  the  microscope. 

It is  not present ly  possible t o  make measurements of res i s tance  nor inf ra red  

transmission on the mounted specimen; however, it has been one of the  goals of 

t h i s  pro jec t  t o  develop a specimen support device which would allow making these 

measurements e i t h e r  i n  or ou t  of the microscope. This support device with a 

su i t ab le  f i lm subs t ra te  on it would be used i n  the beginning when the bismuth f i lm  

was being deposited. 

A miniature f i lm holder w i t h  the  following a t t r i b u t e s  is required f o r  t h i s  

support. 

a. Physical s i z e  equivalent to  t h a t  of an e lec t ron  microscope g r id  

with a square hole (approximately 1.5 mm on a s ide )  i n  the  center.  (A 

microscope g r id  is  3.05 mm i n  diameter and is approximately 0.005 inch 

t h i c k ) .  

b. The material must be e l e c t r i c a l l y  non-conducting t o  permit f i lm 

res i s tance  t o  be measured accurately.  

c. The material must not outgas excessively a t  electron microscope 

column pressures. 

d. The material must be mechanically and dimensionally stable t o  avoid 

d i s to r t ion  and breakage of the metal f i lm mounted upon it. 

Two types of holders w e r e  o r ig ina l ly  considered m o s t  promising. One was made 

of aluminum with a hard anodized surface f in i sh .  The second was made of mylar 

p l a s t i c  d ra f t ing  f i l m  with a m a t t  surface.  

f r o m  g lass  has been considered as a better poss ib i l i t y .  

Recently a miniature holder fabr ica ted  

Each of the  first two choices requi res  a punch of ra ther  c r i t i ca l  dimensions 

and alignment. An attempt was made t o  u t i l i z e  an inexpensive universal  hard 
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punch manufactured by Whitney-Jenson along with a punch-and-die s e t  made on 

spec ia l  order t o  the  dimensions required. 

f o r  two reasons. F i r s t ,  the  punch-and-die set  has excessive clearance and 

does not  punch s a t i s f a c t o r i l y  the very t h i n  materials which must be used. 

second oversize punch w a s  obtained and ground down by a l o c a l  machine shop. 

Although the  f i t  w a s  g r e a t l y  improved, it s t i l l  w a s  unsa t i s fac tory  f o r  use 

with the t h i n  materials. The second problem has been the  excessive clearance 

incorporated i n  the design of the punch i t s e l f .  This clearance precludes i t s  

use i n  its present  configurat ion even i f  a p e r f e c t  punch-and-die s e t  could be 

obtained f o r  use with it. 

This has no t  been s a t i s f a c t o r y  

A 

E f fo r t s  t o  f ab r i ca t e  a g lass  miniature-film holder have been somewhat 

successful .  The holder is c u t  from microscope slide cover g l a s s  (which is  

0.006 in .  th ick)  by using an Airbrasive u n i t  manufactured by the  S. S. white 

Company. The cu t t i ng  is  accomplished by masking the  area of the  f i lm  holder 

and d i r ec t ing  a stream of abrasive particles a t  the  g l a s s  t o  c u t  away the  

unmasked portion. 

Samples have been prepared using hand-cut masks of polyvinyl tape. The 

Airbrasive demonstrator u n i t  which c u t  the g l a s s  w a s  equipped with abrasive 

powder of the l a r g e s t  s i z e ,  however, and the  edges of the sample were chipped much 

i n  the  manner of the edge of a hand-made f l i n t  arrowhead. The fac tory  engineer 

gave assurances t h a t  the f i n e r  abrasive powders would produce a c leaner ,  better- 

def ined edge, and these other  powders w i l l  be considered. 

A search i s  now being made t o  f i n d  an ink which w i l l  serve as a masking 

material and which can be si lkscreened onto the  g lass .  I f  t h i s  is found, 

a s i l k  screen w i l l  be made by a photographic reduction process which w i l l  permit 

the mult iple  appl ica t ion  of dimensionally accurate masks t o  the cover g lass .  

These w i l l  then be cu t  ou t  and examined t o  see i f  the  edges are sa t i s f ac to ry .  
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SUMMARY AND RECOMMENDATIONS 

The results of previous research which postulated the existence of a complex 

impedance for thin films of bismuth have been verified: results very similar to 

those previously obtained on two 90-ohm films have been obtained for several 100- 

ohm films. In addition, it has been possible to validate the previous work with 

an extension of the theory to include films having resistances ranging from 34 ohms 

to 350 ohms. 

Approximate equivalent electrical circuits have been obtained for bismuth 

films having initial resistance values ranging from 34 to 350 ohms. These circuits 

consist of a capacitor in series with a resistor and a capacitor in parallel. The 

value of the resistor is the initial measured resistance of the film divided by 

two. The capacitors are equal. Their value is determined graphically making use 

of transmission line analysis and infrared transmission measurements. The capa- 

citances for these films vary from approximately 1 to 9.6 x lo-’ p p f .  

of the equivalent circuits is substantiated by comparing the infrared transmission 

which each equivalent circuit would predict with the actual value of the trans- 

mission which the film having that equivalent circuit gave. Substantiation is 

further validated by a good comparison of predicted values for inter-grain capa- 

citance with the values actually determined graphically. 

The validity 

It has been possible to determine and to control some of the variables which 

must be kept under surveillance while the effect of irradiation upon the complex 

impedance of the thin bismuth films is being ascertained. Included is the drift 

of the resistance of bismuth films. The change of resistance over periods of time 

up to 750 days has been determined. 

certain periods of time has also been determined. 

The change in infrared transmission over 

-57- 



. 
A continuing study of the behavior of bismuth f i lms i n  the  e lec t ron  micro- 

scope has been conducted i n  order to  discover  the  b e s t  way i n  which t o  handle 

both the examination and the i r r ad ia t ion  of bismuth specimens. N o  conclusions 

can be drawn because of the extreme s e n s i t i v i t y  of the  bismuth f i lm  t o  the 

e lec t ron  beam. 

The requirements of miniature f i lm  holders capable of successive in f r a red  

and r e s i s t ance  measurements and of i r r a d i a t i o n  i n  the  e lec t ron  microscope have 

been determined and are presented. 

It is recommended t h a t  t h i s  research be continued. The rad ia t ion  s tud ie s  

are desirable; however, it i s  also important t o  be able t o  develop c i r c u i t s  f o r  

these f i lms which are equivalent  over a wide spectrum of frequencies.  Probable 

immediate bene f i t s  from a continuation of these s tud ie s  includes:  

1. 

2 .  

3 .  

4. 

5. 

The production of c i r c u i t s  of micro-dimension having very high 
component densi ty .  

The development of highly s e n s i t i v e  in f r a red  de tec tors  through 
resonance or absorption e f f e c t s .  

The modification of micro-circuits by the  e lec t ron  beam. 

The coupling t o  micro-circuits through the e lec t ron  beam. 

An improved knowledge of the  behavior of t h i n  f i lms  i n  terms 
of electric c i r c u i t  theory, enabling t h e i r  use as f a s t  t i m e -  
constant  sensing devices such as bolometers, f o r  example. 
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APPENDIX 

The Strengthening of Research Capabi l i ty  

The grant  under which the research described i n  t h i s  r epor t  w a s  accomplished 

has enabled a dramatic improvement i n  the research competence a t  Southern 

Methodist University. This i s  evident i n  three  ways: 1) i n  the  establishment 

of an e lec t ron  microscopy laboratory where there w a s  no previous f a c i l i t y  of t h i s  

kind; 2 )  i n  the marked improvement of the  research capab i l i t y  of t he  Thin Films 

Research Laboratory; and 3 )  i n  the a t t r a c t i o n  of new facu l ty  and the  r e s u l t i n g  

establishment of new courses (which w i l l  d i r e c t l y  support  the work of Pr inc ipa l  

Inves t iga tors  whose research involves the ana lys i s  of micros t ruc ture) ,  new research,  

and enhanced r e l a t i o n s  with other Universi t ies .  

New Electron Microscopy Laboratory 

During the f i r s t  year (1965) of the research grant ,  NASA awarded an addi- 

t i o n a l  gran t  of $25,000.00 t o  Southern Methodist University.  

a l loca ted  t o  the establishment of an e lec t ron  microscopy laboratory,  l a rge ly  because 

of the needs of the t h i n  f i lms  research p ro jec t  reported upon herein,  because of 

This  money w a s  

the needs of other NASA p ro jec t s ,  and because of the  developing needs of o ther  

f acu l ty  a t  Southern Methodist University. 

$55,000.00 t o  this g ran t ,  enabling a completely equipped laboratory t o  be pu t  i n t o  

operation i n  September of 1966. Design and assembly of the  laboratory was c a r r i e d  

ou t  under the supervision of Professor Lorn L. Howard, Pr inc ipa l  Inves t iga tor  

on the th in  f i l m s  project, and with the  ass i s tance  of the  new Laboratory Director, 

(Mrs.) Venita Allison. The new Electron Microscopy Laboratory extends over 

approximately 720 square feet  of f l o o r  space i n  the Science Information Center. 

Several  air-conditioned rooms are  provided for e l ec t ron  microscopy, for  specimen 

preparat ion,  and fo r  photographic work. The Laboratory layout i s  shown i n  Fig. 3 3 .  

The University added approximately 
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The electron microscope is an  Hitachi model HU-11B2 having a magnification of 

approximately 300,000 t i m e s  and a resolving power of 6.9 angstrom uni t s .  

with the microscope are accessories which enable e lectron d i f f r a c t i o n ,  cooling, 

heating, and c ine  s tud ie s  under conditions both of high reso lu t ion  and high 

cont ras t .  Available i n  the laboratory are f a c i l i t i e s  f o r  shadow cas t ing ,  u l t r a -  

microtomy, knife-making, l i g h t  microscopy, and r e f r ige ra t ion .  The two darkrooms 

provide f a c i l i t i e s  f o r  the immediate user of the  e lec t ron  microscope while a t  

the same time allowing p r in t ing  and o ther  photo-processing a c t i v i t i e s  t o  proceed 

i n  the other  darkroom. 

Included 

The establishment of the Laboratory a t t r a c t e d  support from Varian Associates 

of Palo Alto, Cal i fornia .  After the f a c i l i t y  was i n  operation, Varian Associates 

donated a $15,000.00 MIKROS 20 electron microscope t o  be used f o r  t ra in ing  and f o r  

rout ine microscopy. This instrument is  now located i n  the  Laboratory; however, 

it is  planned t o  locate  it i n  a separate t ra in ing  f a c i l i t y  adjacent t o  the present 

Laboratory during the coming year. The proposed plan is shown i n  Fig. 34. 

Thin Films Research Laboratory 

The research capabi l i ty  of t h i s  laboratory has been improved considerably 

a s  a r e s u l t  of the NASA grant.  The physical  f a c i l i t i e s  have been expanded; and 

the amount of s c i e n t i f i c  equipment avai lable  has been increased, both from NASA 

funds and (because the pro jec t  was i n  operation) from other  sources. This has 

enabled the Laboratory t o  plan more extensive research, and to make research 

proposals which otherwise would have been impossible. I t  has a l so  enabled the 

Laboratory t o  assist some of the loca l  e lec t ronics  industry with current  problems 

and with planning for fu tu re  research and development, both of products and 

of personnel. 

When the grant  began the Laboratory occupied approximately 225 square f e e t  

It  has been expanded t o  include 527 square f e e t  of f l oo r  space of f l o o r  space. 
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* 
in a new air-conditioned building where lighting, power, and other service facil- 

ities are considerably improved. 

Investigator for thin films research, and was built by the University. 

The new laboratory was designed by the Principal 

The principal items of equipment which have enhanced the laboratory capability 

including a stereomicroscope for the handling of miniature films and electron micro- 

scope specimens, and for facilitating the completion of numerous operations 

involving extremely small tools or components. 

automatic film deposition rate monitor and thickness control which makes precision 

control of film formation possible. Further, a mass-spectrometer-type partial- 

pressure analyzer has been installed, and aids considerably in vacuum system 

housekeeping activities in addition to its primary function as an indicator of 

conditions under which thin films are formed "in vacuuo." Also, special acces- 

sories (for a Beckman infrared spectrophotometer) to enable the measurement of 

infrared transmission and reflection on micro-samples have been obtained. These 

will be important in obtaining infrared characteristics on the miniature films 

which are under development for irradiation and other studies in the electron 

microscope. Finally, the addition of the electron microscope discussed in pre- 

ceding paragraphs has been the greatest benefit to the Laboratory. 

Also the Laboratory obtained an 

Collins Radio Company, a local electronics firm which is developing a thin- 

film micro-circuit capability engaged the Principal Investigator and (through him) 

the services of the Thin Films and Electron Microscopy Laboratories during the 

summer of 1967 in connection with thin-film-circuit problems. The results of this 

work will be published during 1968. Collins Radio Company indicates that it is 

planning a continuing use of the Thin Films Laboratory research facilities both for 

study of some of its basic problems with film circuitry and for the doctoral 

training of certain selected employees as the result of a proposal from the 

Principal Investigator. During the period of the research grant this company 
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also donated a used vacuum system and of fered  f u r t h e r  support  through permission 

to  use their laboratory equipment ( f o r  example, the Tallysurf sur face  ind ica to r ,  

microscopes, and gauging devices) and through o f f e r s  t o  donate s m a l l  amounts of 

materials o r  suppl ies  upon request. These a r e  d i r e c t  developments of the 

' strengthening of the Thin Films Laboratory which have come about l a rge ly  as a 

r e s u l t  of the NASA gran t  support. 

The new capabi l i ty  of the Laboratory p laces  it i n  an improved pos i t i on  t o  

undertake addi t iona l  bas ic  t h i n  fi lms research and t o  provide support  f o r  NASA 

groups working with t h i n  f i l m s  problems. I t  is  planned t o  make contact  with 

these groups, and t o  seek support f r o m  o ther  funding agencies. 

New Faculty,  New Courses, New Research, and New Relations With Other Local 
Universi t ies  

The f a c t  t h a t  there  w a s  a new e lec t ron  microscopy f a c i l i t y  a t  Southern 

Methodist University has been instrumental  i n  the  addi t ion of four  new facu l ty  

members i n  the Electronic  Sciences Center and two new facu l ty  members  i n  the  

Biology Department. These facul ty  addi t ions have i n i t i a t e d  a considerable number 

of new courses, including 'one involving in s t ruc t ion  i n  e lec t ron  microscopy. 

courses include 

The 

ES 3245 Electronic Materials Science I 

ES 4346 Electronic Materials Science 11 

ES 5316 Transistor Integrated Circuits 

ES 5317 Integrated Circuits I I  

ES 5318 Integrated Circuit Engineering Laboratory 

ES 5319 Electronic Processes I 

E S  5320 Electronic Processes II 

ES 5322 Semiconductor Materials Technology 

ES 6390 Seminar i n  S ta t i s t ica l  Electronics 
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ES 6391 Seminar i n  Thin F i l m  Phenomena and Devices 

B i o l  129 Preparative Techniques for Electron Microscopy 

B i o l  128  Cyto~ogy 

B i o l  53d Deve1opmental Biology 

Biol 10 Principles of Cell Biology 

Chem 108 Special Topies (Solid State Chemistry) 

(A revised course) 

I n  addi t ion ,  between the  new and the o ld  f acu l ty  there  have been i n i t i a t e d  

t en  new research p ro jec t s  involving as many new graduate s tudents  i n  wide-ranging 

problems, many of which u t i l i z e  t h e  Electron Microscopy Laboratory, and thus 

giving add i t iona l  s t rength  i n  graduate t r a in ing  i n  the  Electronic  Sciences Center,  

and i n  the Physics, Biology, and Geophysics Departments, where these research 

p ro jec t s  are underway. These p ro jec t s  include 

1. A Study of the Structure  of Evaporated Bismuth Films 

2.  Complex Impedance Charac te r i s t ics  of I r r ad ia t ed  Thin Films 

3 .  

4. Far Infrared Absorption i n  Semiconductors With Deep-Lying Impurit ies 

5. The Effec ts  of the Administration of an  Adrenal Inh ib i tor  Upon the  C e l l s  

Transport Phenomena I n  Thin Films 

of the Adrenal Cortex and the  Anterior P i t u i t a r y  

6. A Preliminary Invest igat ion of Myofilament Formation i n  Uterine Muscle 

7. Calcium Transport i n  the Hypodermis of the  Crayfish 

8. Studies of the Fine Structure  of a Sol id  Carbonate 

9. Surface Damage t o  Si l icon Devices Applied i n  Space Vehicles 

10. Electron Microscopy of the Glazed-Aluminum-Oxide Substrate  Surface 

S igni f icant  also are programs being i n i t i a t e d  with other  l o c a l  un ive r s i t i e s .  

Southwestern Medical School (of t h e  Universi ty  of Texas i n  Dallas) graduate 

s tudents  i n  the Department of Anatomy are now encouraged to e n r o l l  i n  the course 

B i o l  129 l i s t e d  above covering preparat ive techniques i n  e lec t ron  microscopy 

-66- 



~~ 

* 
9 

A 
n 

of b io logica l  materials.  Three  semester hours c r e d i t  are given f o r  t h i s  course, 

which includes lec tures ,  seminars ,  and p r a c t i c a l  laboratory experiences. In 

re turn ,  students a t  Southern Methodist University are inv i t ed  to  p a r t i c i p a t e  i n  

ce r t a in  graduate courses a t  the Medical School such a s  the Seminar i n  Electron 

Microscopy, Special  Problems i n  Anatomy, and Research Problems i n  Anatomy. 

Baylor University Medical Center i n v i t e s  Southern Methodist University s tu-  

dents and facul ty  pa r t i c ipa t ion  i n  Center a c t i v i t i e s  which include the applica- 

t i o n  of the electron microscope. In  re turn  the s t a f f  a t  Baylor are invi ted  t o  

e n r o l l  i n  SMU courses i n  Biology (including Biology 129) which can provide ce r t a in  

necessary academic background. 

A Texas Chris t ian University f acu l ty  member has made arrangements t o  use 

the electron microscope and t o  i n i t i a t e  problems of mutual i n t e r e s t  t o  him and t o  

the Laboratory Director.  In  return he would supply funds, make ce r t a in  equipment 

avai lable  t o  loca l  students,  and a s s i s t  i n  seminars and other  a c t i v i t i e s  associ-  

a ted  with the Electron Microscopy Laboratory. 

The electron microscope is available t o  a l l  f acu l ty  members. The Laboratory 

Instead, i t s e l f  is not now located i n  any departmental administrative s t ruc ture .  

i ts  operations are supervised by a pol icy-set t ing committee of users  among the  

facul ty  . 
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